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Abstract. A density functional perturbative approximation, which is based on the pair distribution
function, has been developed to investigate the influence of attractive and repulsive interactions
on the density behaviour of a confined polydisperse fluid. The calculated result shows that the
attractive and repulsive interactions in the model potential are strongly affected on the adsorption
of a confined polydisperse fluid as well as the cavity size and particle size ratio. The attractive
interaction in a polydisperse square-well system increases the pore average mole fraction for small
particles in a circular cavity. Whereas a repulsive interaction in a polydisperse square-shoulder
system decreases the pore average mole fraction for small particles. The local relative concentration
oscillates with a spatial period close to the diameter of a large particle as well as the equilibrium
density distribution does.

1. Introduction

One of the important subjects in the study of fluid structure is to clarify the roles of the strong
short-range repulsive part and the attraction part of the intermolecular potential in determining
structural features of fluids [1–4]. Such investigations have been done for a system of particles
interacting with each other via the square-well potential and the square-shoulder potential.
Actually, the addition of short-range attractive and repulsive interactions beyond the hard core
can profoundly influence the structural properties of a confined model fluid. One example is
the local relative concentration and size selectivity in the adsorption of a confined model fluid.
The other is the isostructural solid–solid transition in model fluids with sufficiently narrow
attractive (square-well) or repulsive (square-shoulder) potentials [3–5]. For a purely repulsive
shoulder potential, the atomic localization is found to increase with increasing temperature in
contrast to the attractive square-well potential.

Lang et al [4] have recently investigated the structure and thermodynamics of the square-
well and square-shoulder fluids using two different theoretical frameworks, i.e. the optimized
random-phase approximation and the Rogers–Young equation. More recently, Lee et al [6]
have applied the density functional perturbative approximation to study the influence of the
potential well and the potential barrier on the density distribution of confined model fluids.
They showed that at lower densities the density distribution is strongly affected by the barrier
height and the well depth of the model potential, a contribution from the short-range repulsive
part being especially important, while the effect of the barrier height and the well depth of
a model potential decreases with increasing the bulk density. As for the two-dimensional
fluid system, Németh and Löwen [7] have studied the freezing problem of a hard-disk fluid
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in circular cavities. Takamiya and Nakanishi [8] have applied the two-dimensional weighted-
density approximation to calculate the structural properties of a two-dimensional Lennard–
Jones fluid confined in the system with a special symmetry. However, for the structural
properties of the two-dimensional polydisperse fluids they are much less well understood
than systems compared with one-component hard-disk fluids. Thus, we develop here the
density functional perturbative approximation to a study of the influence of repulsive–attractive
interactions in the adsorption of a confined polydisperse fluid which is generally characterized
by a continuous distribution of the particle diameters. Actually, the polydisperse fluid is of
great importance for the investigation of the physical properties of an emulsion interacting
strongly with each other in two dimensions [9]. In this case, the crystallization is driven by a
depletion attraction between the large spheres, due to the smaller spheres

In section 2, we will derive the density profile equation, which is based on the density
functional perturbative approximation, for a confined polydisperse fluid. In section 3, the
influence of attractive and repulsive interactions on the structural properties of a polydisperse
fluid confined in a hard circular cavity is studied in detail. The local size segregation and size
selectivity for a confined polydisperse fluid are investigated. Finally, the pore size and particle
size ratio dependences for a confined polydisperse fluid are discussed.

2. Density functional perturbative approximation

The polydisperse bulk fluid is generally characterized by a continuous distribution of the
particle diameters, F(σ), which fulfills the normalization condition∫

dσ F(σ) = 1 (1)

where F(σ) is defined such that the probability of finding a particle of size between σ and
σ + dσ is given by F(σ) dσ . The bulk number of density equal to ρ0 = N/V , where N is
the number of all the particles and V is the volume of the system. The density of particles of
diameter σ is ρ(σ) = ρ0F(σ) [10].

Following the perturbative theory which is well known in the classical liquid theory [11],
the pair interaction potential φpot (σ, r) of model fluids can be divided by the reference part
φref (σ, r) plus the perturbative part φpert (σ, r) of model potential such as

φpot (σ, r) = φref (σ, r) + φpert (σ, r). (2)

Then, the excess free-energy functional Fex[ρ] originating from the particle interaction can
also be written as the reference contribution Fref [ρ] plus the perturbative contribution Fpert [ρ]

Fex[ρ] = Fref [ρ] + Fpert [ρ]. (3)

In the density functional theory for a polydisperse system with the particle diameter σ , the
equilibrium particle density distribution ρ(σ, �r) of the inhomogeneous fluid is described by
the minimum of the grand canonical potential �[ρ] satisfying the Euler–Lagrange relation

δβ�[ρ]

δρ(σ, �r) = 0 (4)

where β = 1/kBT is the inverse temperature and kB is the Boltzmann’s constant [11]. If
the inhomogeneous fluid is in contact with the homogeneous bulk fluid, its chemical potential
µ(σ) is equal to that of the homogeneous bulk fluid. Then, the equilibrium density distribution
function (or density profile equation), ρ(σ, �r), is given, after some manipulations, as

ρ(σ, �r) = ρ(σ) exp[−βuext (σ, �r) + c
(1)
ref (σ, �r; [ρ])

+c(1)pert (σ, �r; [ρ]) − c
(1)
ref (ρ(σ )) − c

(1)
pert (ρ(σ ))] (5)
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where ρ(σ) = ρ0F(σ) denotes the homogeneous bulk density distribution and uext (σ, �r) is
an external potential acting on species σ [11]. In (5), c(1)(σ, �r; [ρ]) is the one-particle direct
correlation function (DCF) of the inhomogeneous fluid, which is defined as

c
(1)
ref (σ, �r; [ρ]) = −δβFref [ρ]

δρ(σ, �r) and c
(1)
pert (σ, �r; [ρ]) = −δβFpert [ρ]

δρ(σ, �r) . (6)

As an approximation for the free-energy functionalFref [ρ] corresponding to the reference
part of the model potential, we use the weighted-density approximation which was proposed
by Rosenfeld and based on the fundamental geometric measures of particles [12]. In this case,
the one-particle DCF c

(1)
ref (σ, �r; [ρ]) is simply given as

c
(1)
ref (σ, �r; [ρ]) = −

∫
d�s

∑
α

∂fref [nγ (�s)]
∂nα(�r) ω(α)(σ, |�r − �s|) (7)

where fref [nα(�r)] is the excess free-energy per volume. Here, we choose the original free-
energy model for numerical use, although some recent modifications are known to give a better
description of solid phase [13]. Actually, the original free-energy model demonstrates reliable
accuracy and reproduces the simulation data accurately even for a large size ratio of hard
spheres. The excess free energy fref [nα(�r)] is assumed as

fref [nα(�r)] = −n0(�r) ln[1 − n2(�r)] +
n1(�r)n1(�r) − �nv1(�r) · �nv1(�r))

4π [1 − n2(�r)] (8)

with a function of only the system-averaged fundamental geometric measure of the particles

nα(�r) =
∫

dσ
∫

d�s ρ(σ, �s)ω(α)(σ, |�r − �s|) (9)

where ω(α)(σ, r) are four weight functions, selected such that the Percus–Yevick equation is
recovered for a homogeneous polydisperse fluid [14].

For the homogeneous state, (7) simply becomes

c
(1)
ref (ρ(σ )) = ln(1 − n2) − n0

1 − n2
− 2n1

4π(1 − n2)
− n2

1

4π(1 − n2)2
(10)

with n0 = ∫
dσ ρ(σ), n1 = π

∫
dσ σρ(σ) and n2 = π

∫
dσ σ 2ρ(σ)/4, since ω(α)(σ ) ∝ σα

for a homogeneous polydisperse hard-disk fluid.
As a next step, we consider an approximation for the perturbative free energy Fpert [ρ].

The free-energy functional corresponding to the perturbative contribution is given exactly by

βFpert [ρ] = 1

2

∫ 1

0
dγ

∫
d�r

∫
dσ

∫
d�s

∫
dσ ′ ρ(2)(�r, �s;φpert (γ ))βφpert (σ, σ

′, |�r − �s|)
(11)

where ρ(2)(�r, �s;φpert (γ )) is the pair distribution function which is related to the radial
distribution function g(�r, �s;φpert (γ )) and γ is the charging parameter [11]. Since the radial
distribution function is little known for a polydisperse fluid, we introduce the mean field
approximation which is based on the simple approximation to the pair distribution function

ρ(2)(�r, �s;φpert (γ )) = ρ(σ, �r)ρ(σ ′, �s)g(�r, �s;φpert (γ )) ≈ ρ(σ, �r)ρ(σ, �s). (12)

Then, the perturbative free energy becomes, from (11) and (12),

βFpert [ρ] = 1

2

∫
d�r

∫
dσ ρ(σ, �r)

∫
d�s

∫
dσ ′ ρ(σ ′, �s)βφpert [(σ + σ ′)/2, |�r − �s|] (13)

where the Lorentz–Berthelot mixing rule has been used to determine the length parameter;
for example, for a binary mixture the length parameter is given as σij = (σii + σjj )/2,
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where i, j = 1, 2. The one-particle DCF c
(1)
pert (σ, �r; [ρ]) corresponding to the perturbative

contribution becomes, from (6) and (13),

c
(1)
pert (σ, �r; [ρ]) = −

∫
d�s

∫
dσ ′ ρ(σ ′, �s)βφpert [(σ + σ ′)/2, |�r − �s|]. (14)

For the homogeneous state, (14) becomes

c
(1)
pert (ρ(σ )) = −

∫
dσ ′ ρ(σ ′)

∫
d�s βφpert [(σ + σ ′)/2, s] (15)

since ρ(σ, �r) = ρ(σ). Taken together, (5), (7), (10), (14) and (15), constitute the density
functional perturbative approximation for a confined polydisperse fluid.

3. Results and discussion

To investigate the effect of attractive and repulsive interactions in adsorption of a confined
polydisperse fluid, we consider two simple model systems with attractive and repulsive
interactions. One is a polydisperse square-well system, consisting of a hard core of range
σ and a square-well depth. The other is a polydisperse square-shoulder system with a barrier
(a hard-sphere potential augmented with a repulsive plateau), which is believed to be due to
the softness of the pair interaction potential associated with a pressure-induced change in the
electronic state of the metal ions. The pair interaction potential βφpot (σ, r) of the polydisperse
square-well and square-shoulder systems is given by

βφpot (σ, r) = ∞ 0 < r < σ

= βε σ < r < λσ

= 0 λσ < r (16)

where the negative well depth βε represents an attractive square-well potential, while a positive
βε produces a repulsive square-shoulder interaction. The λ is the well (or, shoulder) range.

Following the perturbative theory, we divide the model potential into a hard-core part
φref (σ, r) and a perturbative part φpert (σ, r). Then, (16) becomes

βφref (σ, r) = ∞ 0 < r < σ

= 0 r > σ (17)

and

βφpert (σ, r) = 0 0 < r < σ

= βε σ < r < λσ

= 0 λσ < r. (18)

We consider the polydisperse square-well and square-shoulder fluids within a structureless
hard circular cavity. For a hard circular cavity, the external potentialβuext (σ, r) is simply given
as

βuext (σ, r) = ∞ r > R − σ/2

= 0 r < R − σ/2 (19)

where R and r are the radius and distance to the centre of a hard circular cavity, respectively.
For the numerical calculation, the Hankel transform (two-dimensional Fourier transform) has
been used to calculate the weighted densities nα(r) and density profile ρ(σ, r) [15]. Through
this calculation, the well (or shoulder) range has been chosen as λσ = 1.5σ and the average
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Figure 1. (a)φ(σ) for polydisperse fluids (R = 3.6〈σ 〉, σl = 0.4〈σ 〉, σu = 1.6〈σ 〉, andη = 0.450);
(b) φ(σ) for a polydisperse square-well fluid with different well depths.

diameter of particles 〈σ 〉 has been taken as the unit of length. The distribution function of the
diameter of the molecules F(σ) has, for simplicity, been chosen as a stepwise function

F(σ) = 1

σu − σl
σl < σ < σu

= 0 otherwise (20)

where σu and σl are the minimum and maximum size of the particles, respectively. This
distribution function is very simple and provides a restriction for the maximum size
heterogeneity of fluid particles with respect to the average particle diameter 〈σ 〉 [10]. Of
course, other choices of F(σ) such as the log-normal distribution which is defined by the
mean diameter 〈σ 〉 and the standard deviation in units of 〈σ 〉 are possible [9].

We introduce two quantities to study the local size segregation and size selectivity in the
adsorption of a confined polydisperse fluid. One is the local relative concentration of various
species, which represents the effect of the local cross correlation between particles of different
species

φ(σ, r) = ρ(σ, r)∫
dσ ρ(σ, r)

. (21)

Another is the pore average mole fraction φ(σ) or pore average size distribution, which
represents the size selectivity in the adsorption of a confined polydisperse fluid

φ(σ) =
∫

d�r ρ(σ, r)∫
dσ

∫
d�r ρ(σ, r) . (22)

The pore average mole fraction φ(σ) for a confined polydisperse fluid is displayed
in figure 1 as a function of the particle diameter σ . In this case, the bulk mole fraction
x for a polydisperse fluid has been taken to be x = ρ(σ)/

∫
dσ ρ(σ) = 1/1.2, where

σu = 1.6〈σ 〉 and σl = 0.4〈σ 〉. The packing fraction η for a polydisperse fluid is given as
η = π/4

∫
dσ ρ(σ)σ 2 = πρ0/4

∫
dσ F(σ)σ 2. Since the bulk mole fraction is x = 1/1.2,

the adsorption of particles with a size σ is preferred when the pore average mole fraction
φ(σ) is greater than 1/1.2. As can be seen from figure 1(a), for a confined polydisperse
fluid the adsorption of small particles is generally preferred. For a polydisperse square-well
fluid, the pore average mole fraction for small particles is greater than that of a polydisperse
hard-sphere fluid, while the pore average mole fraction for a polydisperse square-shoulder
fluid is less than that of a polydisperse hard-sphere fluid. This result shows that an attractive
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Figure 2. (a) φ(σ) for polydisperse fluids as a function of the bulk packing fraction (R = 3.6〈σ 〉,
σl = 0.4〈σ 〉, and σu = 1.6〈σ 〉), (b) φ(σ) as a function of the radius of circular cavity
R/〈σ 〉(η = 0.450); full curve (σ = 0.4〈σ 〉) and dotted curve (σ = 1.6〈σ 〉).

interaction in a polydisperse square-well system increases (or decreases) the pore average
mole fraction for small (or large) particles in a circular cavity. Whereas a repulsive interaction
in a polydisperse square-shoulder system decreases the pore average mole fraction for small
particles. Figure 1(b) shows the pore average mole fraction for a polydisperse square-well
fluid as a function of the well depth βε. With increasing the well depth (−βε) the pore average
mole fraction for small (or large) particles increases (or decreases). This property can be
explained by the results of competition between the Helmholz free energy and the chemical
potential [1]: the excess free energy has a large value when the densities of large disks are
increased. Then, the excess free energy is more important than the chemical potential. The
larger the particle size, the higher the free energy. Thus, the pore average mole fraction for
small particles increases with increasing the well depth in a polydisperse square-well fluid.
This explains the fact that the attractive and repulsive interactions in the model potential are
affected on the adsorption of a confined polydisperse fluid.

In figure 2, the calculated pore average mole fraction has been presented as a function
of the circular cavity radius R/〈σ 〉 and the bulk packing fraction η. At a low bulk packing
fraction the adsorption of small particles is more preferred than that of large particles. With
increasing the bulk packing fraction small particles are excluded for a circular cavity†. The
pore average mole fraction for small particles decreases nearly linearly with an increase of the
pore size and bulk packing fraction. This result suggests that the onset of segregation at small
polydispersity is generic [14].

The local relative concentration φ(σ, r) and its corresponding equilibrium density
distribution ρ(σ, r)〈σ 〉2 is displayed in figures 3, 4 and 5. The calculated result shows the
strong local size segregation with local cross correlation between particles of different sizes
and the anti-correlated oscillations around the bulk packing fraction (x = 1/1.2) in the relative
amounts of small and large particles. One interesting thing is that the distance between the
two peaks is almost the same as the diameter of a large particle, but not the diameter of
a small particle. As for the equilibrium density distribution, the distance between the two
peaks is also almost the same as the diameter of a large particle. This means that the local

† At a very low packing fraction, the pore average mole fraction depends only on the maximum radius, R − σ/2,
available to the centre of a disk; φ(σ) ≈ ρ(σ, r)(R − σ/2)2/

∫
dσ ρ(σ, r)(R − σ/2)2.
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Figure 3. (a) Local relative concentration φ(σ, r) and
(b) equilibrium density distribution ρ(σ, r)〈σ 〉2 for a
polydisperse hard-sphere fluid (R = 3.6〈σ 〉, σl =
0.4〈σ 〉, σu = 1.6〈σ 〉, and η = 0.450); full curve
(σ = 0.4〈σ 〉), dotted curve (σ = 1.0〈σ 〉), and broken
curve (σ = 1.6〈σ 〉).

Figure 4. As in figure 3, but for βε = −0.4 (a
polydisperse square-well fluid).

Figure 5. As in figure 3, but for βε = 0.4 (a polydisperse
square-shoulder fluid).

Figure 6. As in figure 1(a), but for σl = 0.8〈σ 〉 and
σu = 1.2〈σ 〉.

relative concentration oscillates with a spatial period close to the diameter of a large particle
as well as the equilibrium density distribution does. As can be seen from figures 3, 4 and 5,
for a polydisperse square-shoulder fluid the higher density distribution near a cavity wall can
be found compared with that of the polydisperse square-well and hard-sphere fluids. For a
polydisperse square-well fluid, the strong anti-correlated oscillations around the bulk packing
fraction can be found compared with those of the polydisperse hard-sphere and square-shoulder
fluids. Actually, at a low packing fraction the equilibrium density distribution strongly depends
on the attractive (or, repulsive) part of the model potential rather than the hard-sphere potential.

The pore average mole fraction and its corresponding equilibrium density distribution for
η = 0.450 are shown in figure 6, where σu = 0.8〈σ 〉 and σl = 1.2〈σ 〉. Since the bulk packing
fraction is x = 2.5, the adsorption of particles with size σ is preferred when the pore average
mole fraction φ(σ) is greater than 2.5. For a polydisperse square-well fluid, the pore average
mole fraction for small particles is greater than that of a polydisperse square-shoulder fluid.
Once again, this result shows that the attractive (or repulsive) interaction of the model potential
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is affected on the adsorption of a confined polydisperse fluid. Even though we did not display
the local relative concentration in the figure, the calculated results also show the anti-correlated
oscillations around the mean value (φ(σ) = 2.5). The local relative concentration oscillates
with a spatial period close to the diameter of a large particle as well as the equilibrium density
distribution does. A comparison of figures 1 and 6 indicates that the size selectivity of a
confined polydisperse fluid depends on a particle size ratio σu/σl .

In summary, we have developed a density functional perturbative approximation to
investigate the influence of attractive and repulsive interactions on the density behaviour of
confined polydisperse fluids with the continuous distribution of the particle diameters. The
calculated results have shown that the preferred species in a circular cavity depend on the size
ratio of mixtures as well as the cavity size. The local relative concentration oscillates with
a spatial period close to the diameter of the large particle as well as the equilibrium density
distribution does. The attractive and repulsive interactions in the model potential are affected
on the adsorption of a confined polydisperse fluid. Here, the interesting things are: (i) the role
of the attractive and repulsive interaction on the adsorption of a polydisperse fluid confined
in a spherical cage [16, 17]; and (ii) the adsorption of a polydisperse soft-sphere fluid in a
micropore or near a hard wall [18, 19]. We will investigate these problems in the near future.
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